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1 Introduction 

This report describes an Agent Based Software Architecture that intends to close the gap 

between hybrid systems and software agent architectures [7] [8] [9]. The described tool 

provides support for task design, task planning, task execution, task coordination and task 

analysis for a multi- robot system. 

There are currently available several software tools for the mission design and 

development for teams of real robots like TeamBots [13], Mission Lab[12] and 

CHARON[11]). 

TeamBots is a collection of Java application programs and libraries designed to support 

multiagent systems. It supports simulation of robot control systems and execution of the 

same control systems on mobile robots. It includes a communication package 

(RoboComm), and Clay, a library to support behavior-based control systems. The 

simulation environment is written entirely in Java. Execution on mobile robots sometimes 

requires low-level libraries in C, but Java is used for all higher-level functions. 

Mission Lab is a mission specification software that uses visual programming and 

reusable components. It is composed by several subsystems such as console display, a 

visual configuration editor, a simulator, and a runtime and usability data logging module. 

MissionLab generates code that runs under a distributed architecture (e.g., the main 

user’s console can run on one computer while multiple robot control executables are 

distributed across a network, potentially on-board the actual robots they control.). 

CHARON is a language for modular specification of interacting hybrid systems based on 

the notions of agent and mode. It provides operations for both an hierarchical description 

of the system architecture (referring to the agents relations), and an hierarchical 

description of the behavior of an agent. The discrete and continuous behaviors of an 

agent are described using modes. A mode is basically a hierarchical state machine, that is, 

a mode can have submodes and transitions connecting them. Agents in CHARON can 
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communicate via shared variables and communication channels. Both event-driven 

discrete state and time-driven continuous state system descriptions are supported. 

Another framework for generic and reusable robotic components that can be adapted to a 

number of heterogeneous robot platforms has been developed in recent years at the Jet 

Propulsion Laboratory, under the designation "Coupled Layered Architecture for Robotic 

Autonomy" (CLARAty). CLARAty consists of two distinct layers: a Functional Layer 

and a Decision Layer [10]. 

The lower abstraction Functional Layer encapsulates functions which interface with the 

actual hardware or simulations and provides low to mid-level autonomy. The higher 

abstraction Decision Layer provides high-level autonomy and is concerned with mission 

constraints and resources. The interface between the two is based on an intentional 

overlap between the two layers, allowing the higher declarative level to use high 

resolution information and the lower functional level to build abstractions from its basic 

functionalities, such as a navigator. There is a clear focus on software modularity and 

reusability, as well as on abstracting the functionalities of distinct robotic platforms. The 

architecture does not seem to be designed for cooperative multi-robot systems. 

 

The report is divided in three major parts: 

First, we present, in Section 2, the conceptual model of the proposed Agent Software 

Architecture that supports the work currently being developed in the “Rescue - 

Cooperative Navigation for Rescue Robots” project [15]. 

In Section 3, a reference guide to the application program interface (API) and to the 

software architecture is presented. This reference guide is targeted for researchers and 

students working on the Rescue Project, as well as to future users of the architecture. 

Finally, in Section 4, we describe the Rescue project instantiation of the concepts 

involved in this software architecture. 
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2 Conceptual Model 

The conceptual model of the agent-based software architecture includes different types of 

agents that can be combined both hierarchically and in a distributed manner [1].  

The architecture support information fusion between several sensors and the sharing of 

information between the agents by a Blackboard [2] and is geared towards the 

cooperation between robots. 

Agents are generically organized hierarchically. At the top of the hierarchy, the 

algorithms associated with the agents are likely to be planners, whilst at the bottom they 

are interfaces to control and sensing hardware.  The planner agents are able to control the 

execution of the lower level agents to service high-level goals.  The latter can be 

distributed across several processors and/or robots. To offer platform independence, only 

the lowest level agents are specific to the hardware, and these have a consistent interface 

for communication with the planning agents that control their execution. 

The elements of the architecture are the Agents, the Blackboard, and the 

Control/Communication Ports. Next, each of them is described in detail. 

2.1 Elements 

2.1.1 Agent 

We define Agent as an entity with its own execution context, its own state and memory 

and mechanisms to sense and take actions over the environment.  

Rescue Agents have a control interface used to control their execution. The control 

interface can be accessed remotely by other agents or by a human operator. Through the 

control interface, an Agent can be enabled, disabled and calibrated. 

Agents share data by a data interface. Through this interface, the agents can sense and act 

over the world. 

There are two main classes of agents, Composite Agents and Simple Agents.  
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• The Composite agents are Agents that are composed by two or more agents. The 

principle behind composite agents is to abstract a group of related agents. An 

agent society can have several types of groups. Groups represent the way that 

agents relate or interact with each other’s. Composite agents allow a group of 

agents to be faced as a single agent by designers, by operators or by other parts of 

the system. For this to be possible, a composite agent must take control over the 

agents that compose him. Moreover, composite agents must be easy to use: their 

usage should be only a matter of choosing the right type of composite agent and 

then plugging the controlled agents. 

• Simple agents are agents that do not control other agents; they do not even need to 

know about the existence of other agents. Simple agents represent hardware 

devices, data fusion and control loops. 

 

For now the supported agent types are: 

o Goal-Based Agent: a composite agent that knows other agent’s 

actions, the context in which to apply them and the expected result of the 

actions to build plan(s) to reach the proposed goal, this type of agent is 

foresee but not currently implemented. 

o Finite State Machine Agent: a composite agent used to model 

complex interactions between agents. Each plugged Agent is associated to 

a state of the FSA. The execution of the FSA given an input sequence of 

events makes the FSA go through a sequence of states. In each of the 

states, the associated controlled Agent is executed. Therefore, the state 

sequence implies the sequential execution of the controlled agents. 

o Concurrent Agent: composite agent that represents the 

simultaneous execution of two or more agents. All the agents plugged on 

this composite agent will execute simultaneously. 

o Exclusive Agent: This composite agent represents the exclusive 

execution of agents. It is used to make sure that only one of the plugged 
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agents is executing at a given time. This is a type of agent similar to the 

micro-agents of the SocRob project [3]. 

o Periodic Agent: An agent that executes a given function 

periodically. The period is specified. This agent can be used for data 

fusion and control loops. 

o Sensor Agent: A driver or a server to a hardware device of the sensor 

type. These are customized made for each type of sensor. Usually they 

take data from the sensor to the blackboard. 

o Actuator Agent: A driver or a server to an hardware device of the 

actuator type. These are customized for each type of actuator. Usually they 

take commands from the blackboard to the actuator. 

The possible combinations among these agent types provide the flexibility required to 

build a Mission for a cooperative robotics project, such as the Rescue project [1]. For 

special interactions that are not currently supported, the architecture is open to include 

other types of agents. 

We refer to the mission as the top-level task that the system should execute. In the same 

robotic system, we can have different missions. The robotic system runs a mission 

similarly to an operating system running an application. The mission is a particular agent 

instantiation. The agent’s implementation is made in a way to promote the reusability of 

the same agent in different missions [1]. 

 

2.1.2 Blackboard 

The Blackboard is a distributed structure that gives support to the data exchange 

between the Agents. Each entry on the blackboard is a collection of samples ordered by 

their creation time. Since all the data shared between the agents goes through the 

blackboard, reads and writes are concurrent to maximize performance. 
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2.1.3 Ports 

Ports are a handy abstraction to keep the agents decoupled from other agents. When an 

agent is defined, his ports are kept unconnected. This approach enables using the same 

agent definition in different places and in different ways. There are two types of ports: 

control ports and data ports (Figure 1). 

Agent A

BlackBoard
Output Control Port

Data Input Port

Input Control Port

Data Output Port

... DataEntry

DataEntry

 

Figure 1 – Agent Control and Data Ports. 

 

Control ports are used within the Agent hierarchy to control agent execution.  

Each agent is endowed with one upper control interface. The upper interface has two 

defined control ports. One of the ports is the input control port; we can see it like the 

request port from where the agent receives notifications of actions to perform from 

higher-level agents. The other port is the output control port through which the agent 

reports progress to the high level agent. This is what we denote as a consistent interface 

for control.  

Composite agents also have a lower level control interface from where they can control 

and sense the agents beneath him. The lower level control interface is customized in 

accordance to the type of agent. For instance, a Finite State Machine Agent 

has as many lower level control ports as agents that he is controlling.  An additional data 

input port is used to enable the agent receiving events (Figure 2). 
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State Machine Agent

Output Control Port

Agent C

Input Contol Port

Agent B

Data Port

 

Figure 2 – A Composite Agent and two controlled agents beneath him. 

 

Data ports are used to connect the agents to the blackboard data entries, enabling agents 

to share data. More than one port can be connected to the same data entry. Several agents 

can be reading from the same place at the same time (Figure 3). However if a data entry 

has more than a write port connected, some sort of contention resolution mechanism 

(such as a Exclusive Agent) must be used. 

Agent A

BlackBoard
Output Control Port

Data Input Port
Data Output Port

Agent B

data

data

Data Output Port

 

Figure 3 – Agent A is writing a value on the Blackboard that Agent B is reading. 

The data ports are linked together through the blackboard. For configuration flexibility of 

the agent’s hierarchy, the agent ports are not assigned in the definition of the agent. Ports 

are assigned in the instantiation of the agent hierarchy. 
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Each agent also defines a new scope (his scope) inside of the blackboard. The scope can 

be viewed as the context of the agent. 

2.2 Execution Modes 

Traditionally, in Robotics, there is a trend towards giving importance only to the run-time 

impact of the robotic system architecture. Unfortunately, during several research phases, 

robots are stopped most of the time. Much time and resources are consumed in system 

design, system calibration and system analysis. These are very relevant issues often 

forgotten by Robotics researchers. A well-designed architecture targets the support and 

speed-up of these development phases [16]. 

Usually, properties such as system distribution and concurrency are relevant during the 

mission execution, since they provide better resource allocation and robustness.  

Centralization and persistency are important properties when dealing with the robots 

prior to the mission execution or handling the data acquired after the mission execution. 

Those properties also help managing different missions for a team of robots. 

Even during mission execution, system distribution is not required all the time for all the 

aspects. To control the robots it is better to think of them as a fleet, and to be able to exert 

control over the fleet from a central place, when needed. 

Under this architecture, a different execution mode exists for each development phase of 

a multi-robot system.  

The system hardware is composed by a central station and by the robots. Despite the fact 

that some robots do not have a computer onboard (e.g., the blimp in the Rescue project), 

it is understood that there is a computer that controls such robot(s). The robots and the 

central station use a wireless network for communication.  

The centralized execution modes of the software architecture are located on the central 

station. In spite of being centralized, they do interact with the robots (Figure 4).  

The control mode follows a distributed approach. This mode is spread across the robots, 

however can be controlled from the central station (Figure 4). 
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Mission and Fleet Management
Station Control

Design Calibration
Supervisory
Control and
Monitoring

Data and
Debug

Robot::Atrv Robot::Bimp

wireless

Run-time
ControlRun-time

Control
 

Figure 4 – System Execution Modes – Example for the rescue project. 

 

Next, we describe each of the five execution modes available on the Software 

Architecture. 

First, we describe the Control Mode that refers mostly to the run-time interactions 

between the elements. Afterwards, we describe the Design Mode, the Calibration 

Mode, the Supervisory Control Mode and finally the Logging and Data Mode. 
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2.2.1 Control Mode 

The control exerted by an upper-level agent over a lower-level agent is accomplished 

through special and well-defined functions: start, stop, set and reset. In this 

sense if we stop the agent that encapsulates the whole fleet, he will request his lower-

level agents to stop, so a cascading reaction will stop all the agents’ hierarchy inside each 

of the robots, from the top down to the lowest level hardware agents, including the 

robots. A similar behavior happens with the start command. 

2.2.2 Design Mode 

The Design Mode is similar to a graphics drawing program. In these programs, there are 

different tools for the different graphic objects, such as lines, squares and so on.  

In the Design Mode, instead of drawing tools for each type of graphic we have a drawing 

toolbox for each type of the supported agents, plus one additional toolbox for linking 

agents written in pure code. The output is a meta-language that represents an instantiation 

of the supported agents or the included code files when the agent is implemented in pure 

code. The language describes the connections between the agents. This meta-language is 

then transferred to the target robots for execution.  

Currently we are developing the language. All the support to the language instantiation 

has been developed. 

2.2.3 Calibration Mode 

Usually, robots have controllers, sensory processing and even hardware that must be 

configured or calibrated. Controllers, behaviors and perceptual processes have parameters 

that must be tuned. Usually this data is kept in text files for ease of modification without 

the need to recompile the code. For more complex calibration procedures (like color 

segmentation) special configuration process must be executed sometimes. 

To simplify the calibration procedure for the robot fleet, each agent has an associated 

calibration window, which can be requested remotely before the start of the mission. The 
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calibration data is persistent and can be used in a later mission. To keep management of 

the fleet a simple job, the calibration data is stored in the central station. This data is 

distributed to the robots before run time. 

The operator does the calibration following the instructions appearing in the remote 

window. For each agent involved the mission, the program asks the operator if he/she 

wishes to make a new calibration, to skip, to save or to load a previous one. This is done 

in a top-down manner. Answering “skip” to the agent that encapsulates the whole fleet 

will produce the result of all robots with all their agents being calibrated by the latest data 

used. 

This mode provides support on managing the data calibration files. It also supports the 

way the various data types are written and read from the files. 

2.2.4 Supervisory Control Mode 

Each of the agents has, in addition to the Calibration window, an associated Supervisory 

Control window, corresponding to the Supervisory Control Mode, designed to be user-

friendly. Therefore, the agent that controls the motors has an user-interface appropriated 

for its specific task. This interface is different from the user-interface to a (higher-level) 

planner agent. There are common features to all agents like the request to start, the 

request to stop or the request to logging. All the common features are provided by the 

mode window in the form of buttons and text boxes.  

The supervisory control window uses the same program-interface through which the 

agents receive control requests from higher-level agents and get data from the same 

program-interface through which the agents report success, failure or progress to the 

higher-level agents. The only difference is the use of a graphical window for ease of 

human use. If the operator chooses to control an agent from the hierarchy, the framework 

should disable all control requests arriving at the controlled agent from other agents. 

In the supervisory control window, there is also a blackboard view. In the blackboard 

view, the supervisor can consult or modify the various types of variables. This is an 

extension of the blackboard view interface of the SocRob project [14]. 
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2.2.5 Logging and Data Mode 

Each of the agents can keep a logging file. if the supervisor chooses an agent whose 

activities are to be logged, that file is written locally inside each of the robots. After the 

mission ends, the log files are stored in the central station. During run-time, an operator 

can also choose to consult the logging of a particular agent. This mode logs, with the 

corresponding time tag, all the requests arriving and all reports departing an agent. 

Changes in the variables inside the blackboard can also be selected to be automatically 

logged by the framework with the corresponding time tag. Additional logging should be 

made inside the code of the agent. The framework provides a program interface for doing 

so, without the need of opening files and managing files. 

3 Application Programming Interface Reference 

The concepts presented in this software architecture follow an Object Oriented approach. 

This project was developed using C++ and CORBA. We have chose C++ because it gives 

the best compromise between performance and the Object Oriented flexibility. Whenever 

more flexibility was needed, CORBA was used. CORBA was also used for the 

communication between the robots. We have chosen to give preference to the C++ 

standard library. For the future developers, namely these working on image processing, it 

is advised the use of the OpenCV library from Intel. To connect the system to one of the 

robots we have used the iRobot mobility library [4] [5] [6]. 

3.1 Blackboard 

The blackboard is a shared memory system. The blackboard can store several types of 

data variables:  

FloatVar 

FloatVectorVar 

IntVar 

IntVectorVar 
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CharVar 

CharVectorVar 

 

Usage: 

FloatVectorVar  Velocity(“RobotVelocityXYTheta”,3,10); 

This line creates a data entry called “RobotVelocityXYTheta” that is a vector 

composed of three Floats. The data entry can hold a history of ten velocities. 

BBAddEntry(&DataEntry); 

This method adds a previously created data entry to the blackboard. 

 

3.2 Agents 

All the agent types share a common set of features, so we have an abstract class Agent 

that represents and implements those features. Some of the methods described here are 

CORBA methods; this means that they can be called over the network [4]. 

First the Agent is created with the New(name) method, and the memory is allocated. 

Next, the framework calls the Initialize() function that initializes the execution 

context of the agent. 

In the Stopped state, the agent is prepared for execution but remains stopped. Here, he 

can receive a Calibration event and start the calibration process. The Agent can also 

receive the StartActivity event. When that happens, the OnEntry() function is 

called once and after that the Agent will run the Activity() function until he receives 

a StopActivity event. Where the framework calls the OnExit() function once and 

then the agent returns to the Stopped state. 
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StoppedOnEntry()

OnExit()Activity()

MemoryAlocated

StartActivity delete

StopActivity

* *

New

Initialize

Calibration

Calibrate
end

 

Figure 5 - The life cycle of an Agent 

 

The agent can only be destroyed on the Stopped state.  

Each agent has a uniquely identified name given when the agent is created. 

 

Methods: 

Virtual Initialize() 

Virtual OnEntry() 

Virtual Activity() 

Virtual OnExit() 

Virtual Calibrate() 
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3.2.1 Control Ports 

The purpose of the control ports is to control the execution of the agent. All of the 

available functions can be called through the network. Control port operations are 

represented by functions, given that all the agents have always the same type and number 

of control ports. 

StartActivity (timeout) 

This function starts the agent activity. This is a handshaking protocol. The function 

is blocking until the timeout elapses. If after the timeout the called agent does not 

start his activity then the caller Agent is released. The timeout value should be set to 

the maximum expected communication delay. 

This function throws a CommunicationError exception in the case of a 

timeout. 

This function is a hierarchical function (see Composite Agents). 

 

StopActivity (timeout) 

This function stops the agent activity. This is a handshaking protocol. The function 

execution is blocked until the timeout elapses. If, after the timeout, the called agent 

does not stop his activity, then the caller Agent is released. The timeout value 

should be set to the maximum expected communication delay. 

This function throws a CommunicationError exception in the case of a 

timeout. 

This function is a hierarchical function (see Composite Agents). 

 

Calibrate (timeout, file) 

Calling this function starts the calibration process of the Agent. If, after the timeout, 

the agent did not start the calibration process, the function throws a 

CommunicationError exception, and the caller will be released. File is the file 
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from where the agent reads the calibration data. If file is null, the agent will start the 

interactive calibration process. 

This function is a hierarchical function (see composite agents). 

StartLog(); 

StopLog(); 

SetLogFile(Path/File); 

 

3.2.2 Data Ports 

An Agent receives and sends blackboard data through the data ports. The ports are 

required to make an indirection which decouples the agent implementation from the 

agents use. 

 

Every agent has a port table that connects a given PortName to a given BBentry. 

There are several types of data ports, such as integer, float and char. All these 

types exist in vector form too. 

Port Types: 

FloatPort 

FloatVectorPort 

IntPort 

IntVectorPort 

CharPort 

CharVectorPort 

  

Declaration example: 

FloatVectorPort *VelocityPortPointer; 
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Reading: 

GetSampleByTime(timeStamp,&sample) 

GetSampleBySeq(int,&sample) 

GetSampleByOrder(int,&sample) 

GetSampleLast(seqnumber,&sample) 

 

Writing: 

PutSample(&sample) 

 

AgentPortsMethods: 

AddNewPortToAgent(“PortName”,Portpointer) 

BindPortToBBEntry(“AgentPath/PortName”, 

DataEntryPointer); 

 

3.3 Agent Types 

3.3.1 Concurrent Agent 

This is a Composite Agent. The purpose of this agent is to run agents in parallel: it should 

be used when two or more agents share the same life period. 

When a hierarchical method is called on the concurrent agent, the agent calls the 

corresponding methods of all the agents added to him. 
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AddAgent(Agent) 

This method adds an Agent (any type of agent) to the Concurrent Agent. This 

method automatically connects the control ports of the agents. This method can 

only be called between the new() constructor and the Initialize() method.  

3.3.2 Exclusive Agent 

This is a Composite Agent. The purpose of this agent is to run the added agents one at a 

time: It should be used when two or more agents share the same life period but they 

should not be executed simultaneously. This agent can be used to model some sort of 

exclusion mechanism. 

This agent is similar to the SocRob project micro-agents that run one plugin of a set of 

plugins at a time. The Exclusive Agent chooses which agent to run when he receives the 

event associated with that Agent. 

The Exclusive Agent has a data port called Select to receive the events. 

AddEventAgent(event, agent) 

This method adds an agent (of any type) to the Exclusive Agent. The added agent is 

associated with the event given. Whenever this event is detected the agent is started. 

 

3.3.3 Finite State Machine Agent 

This is a Composite Agent. The purpose of this agent is to execute a different agent in 

each state of a state machine. Whenever a state is reached, the Agent associated with that 

state is started. 

The Finite State Machine Agent has a data port called Event to receive the events. 

The Finite State Machine Agent has a special port called State. Whenever a Finite 

State Machine Agent changes the port State, it is updated with the new state. 
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AddState (agent) 

This method adds an agent (of any type) to the Finite State Machine Agent. This 

Agent is associated with a state, and the name of the state is the name of the 

agent. 

AddTransition (event, state1, state2) 

This method adds a transition (triggered by event) from state1 to state2 

MarkFirstState (state) 

This method marks state as the starting state of the Finite State Machine. 

3.3.4 Periodic Agent 

This agent runs the virtual method PeriodicActivity() in a loop with the period 

chosen. The user should override this method with his/her own function. 

He can also override the OnEntry(), OnExit() and Initialize() functions. 

SetPeriod(timeval); 

This function sets the period timeval for the PeriodicActivity. 

Virtual PeriodicActivity(); 

The framework calls this function periodically. The user should redefine this 

function with the required functionality. This function is already called in loop. 

This is similar to the method function of the SocRob Project. 

3.4 Using the API 

3.4.1 Defining a Periodic Agent 

In this section, we give a simple example of how to define a periodic agent: 

 
#include “Agents.h”  

include for the Abstract class Periodic Agent 
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class MyAgent:public PeriodicAgent  

FloatPort *VelocityPortPointer; //port declaration 

Float velocitySample; // sample declaration 

 

MyAgent() { 

On the constructor we give a name to the ports: 
AddNewPortToAgent(“PortName”, VelocityPortPointer); 

} 

virtual PeriodicActivity { 

This function is called in loop. 

First, in the beginning of the loop step, we should read the BB variables. 

Reading from the port: 
VelocityPortPointer->GetSampleLast(velocitySample); 

 

User code: here we should put the code 

/* CODE HERE */ 

 

At the end of the loop step, we should actualize the BB variables: 

Write a value to the data-port: 
VelocityPortPointer->PutSample(3); 

} 

 

3.4.2 Building an Agent Hierarchy. 

In this section we give a simple example of how to instatiate agents and build a small 

hierarchy (Figure 6).  
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Actuator

ExclusiveAgent

ConcurrentAgent

PeriodicAgent2PeriodicAgent1

BlackBoard

Command Data Port

Data Port

Data Port

Event

Data Port

 

Figure 6 – Small agent hierarchy 

 

In this example the ExclusiveAgent and the Actuator agent run in parallel 

because they are “inside” a concurrent agent. The actuator agent picks a command from 

the Blackboard that it sends to the hardware atuator device. 

Inside the Exclusive agent there are two periodic agents that send in the example, 

velocity commands to the actuator agent. The active periodic agent is chosed by 

writing an event on the blackboard entry called “event”. The ExclusiveAgent,  

upon detection of event1 starts the agent PeriodicAgent1, when he detects the 

event2 he stops the  PeriodicAgent1 and starts the PeriodicAgent2 and so 

on. 
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Intanciating the periodic Agents: 

MyAgent PeriodicAgent1(“PeriodicAgent1”); 

MyAgent PeriodicAgent2(“PeriodicAgent2”); 

Intanciating a Exclusive Agent: 

ExclusiveAgent varExclusiveAgent(“ExclusiveAgent”); 

Inserting two Periodic Agents on the Exclusive Agent 

varExclusiveAgent.AddEventAgent(“Event1”,PeriodicAgent1); 

varExclusiveAgent.AddEventAgent(“Event2”,PeriodicAgent2); 

Intanciating an Concurrent Agent 

ConcorrentAgent varConcorrentAgent(“ConcurrentAgent”); 

Inserting one Actuator Agent and a Exclusive Agent to the Concurrent Agent: 

varConcurrentAgent.AddAgent(ExclusiveAgent); 

varConcurrentAgent.AddAgent(ActuatorAgent); 

Intanciating the data entries on the Concurrent Agent blackboard: 

FloatVar VelocityEntry(“velocity”,1); 

ConcurrentAgent.BBAddEntry(&VelocityEntry); 

charVectorVar Event(“event”,256,1); 

ConcurrentAgent.BBAddEntry(&Event); 

 

Connecting the Periodic Agents Ports together 

ConcurrentAgent.BindPortToBBentry(“AnExclusiveAgent/Periodi

cAgent1/VelocityPort”,VelocityEntry); 

ConcurrentAgent.BindPortToBBentry(“AnExclusiveAgent/Periodi

cAgent2/VelocityPort”,VelocityEntry); 
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ConcurrentAgent.BindPortToBBentry(“AnExclusiveAgent/select”

,Event); 

 

If the agent hierarchy is not started the agents do not do any kind of work. 

To start the agent hierarchy we simple need to start the Concurrent Agent: 

ConcurrentAgent->start(); 

To change to periodic Agent1: 

ConcurrentAgent->EventPort->PutSample(“Event1”); 

To change to periodic Agent2: 

ConcurrentAgent->EventPort->PutSample(“Event2”); 

 

Finally, to stop the agent hierarchy we simple need to stop the Concurrent Agent: 

ConcurrentAgent->stop(); 

 

 

4 Agent Architecture Applied to the Rescue Project 

Under the reference scenario of the Rescue project, the land robot should be able to build 

a topological map, and be able to locate itself on that map, as well as to show different 

navigation capabilities, such as topological navigation with obstacle avoidance. With the 

topological navigation the robot should be able to go from one topological state to an 

arbitrary topological state. He should be able to change from Topological Navigation to 

either Metric Navigation or User Operated Navigation. All the values on the blackboard 

of the land robot can be read over the network.  

The following sections describe the top-down instantiation of such a Rescue Mission. 
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4.1 Top Level Agents 

The Figure 7 shows the first system decomposition. Sensor and Actuator agents where 

kept out of the diagram for the ease of interpretation. In addition to one agent per sensor 

and one per actuator, the system is split into five main Agents.  

 

Agent::Concurrent::Atrv

 

  Figure 7 – System Top Agent 

  

 

Agent::Periodic::TopologicalLocalization

Agent::Periodic::TopologicalMapping Agent::Concurrent::NavigationSystem

Agent::Periodic::MetricLocalization Agent::Concurrent::FeaturesTransform
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Each of the agents is responsible for a subsystem: 

o Features Transform – This group of agents is responsible for 

picking raw data from the several sensors (sonar, laser, compass and 

image). The raw data is subsequently transformed into features that the 

Topological agents can use [17][18]. 

o Navigation System – This group of agents is responsible for the 

either the topological or the metric navigation of the robot. The Navigation 

sub-system includes obstacle avoidance behavior.  

o Topological Localization – This agent gets the data-features and, 

comparing then with information taken from the topological map, 

determines where the robot is on the topological map [17][18]. 

o Topological Mapping – This agent is responsible for picking the 

features and building the topological map [17][18]. 

o Metric Localization – This agent is responsible for picking raw 

data from several sensors (odometric, GPS and compass). This data is 

fused together to determine the robot metric position and velocity. 
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Figure 8 – Data Flow for the first system decomposition. 

 

The Figure 8 depicts the data exchanged by the top rescue agents.  

The arrows represent data connections between the agents. As explained before these 

connections are made throughout the blackboard. Arrows represent more than a value 

being exchanged. When an arrow is simple, it means that the starting agent is writing the 

data on blackboard entries. The pointed agent is reading the data from the blackboard 

entries. Only the TopologicalMap and TopologicalPosition data entries are 

represented. 
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If the arrow forks it means that more than one agent is reading the same data.  When the 

arrow is double it means that the agent is reading and writing data. In the diagram, the 

TopologicalLocalizationAgent is reading the TopologicalMap data and 

writing the TopologicalPosition data. 

4.2 Bottom Agents. 

 

Agent::Concurrent::NavigationSystem

 

Figure 9 – Navigation System decomposition. 

The navigation system includes an ObstacleAvoidanceController agent, an 

ObstacleDetection agent, and a Navigation agent. The Navigation agent is 

an Exclusive agent that multiplexes the several Navigation behaviors. 

 

Agent::Exclusive::Navigation Agent::Periodic::ObstacleDetection

Agent::Periodic::ObstacleAvoidanceControler
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OBSTACLEMAP

TRANSLATION
ROTATION

Agent::Periodic::ObstacleDetection

Agent::Periodic::ObstacleAvoidanceControler

LASER

SONAR

TRANSLATION
ROTATION

Agent::Exclusive::Navigation  

Figure 10 – Data exchange inside the Navigation System. 

The Exclusive Agent Navigation chooses the desired robot translation 

and rotation. The ObstacleAvoidance controller chooses the possible 

Translation and Rotation given the ObstacleMap. The Laser data and Sonar data 

come from the Sensor agents. The translation and rotation commands end on the 

Motors agent (see Figure 8). 

 

Agent::Table::Navigation

Agent::Periodic::UserOperatedNavigation

Agent::Periodic::WayPointNavigation

Agent::Periodic::TopologicalNavigation

 

Figure 11 - Navigation Behaviors inside the Exclusive Navigation Agent 
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Since the agents are inside a Exclusive Agent this means that they never execute 

simultaneously. 

o Topological Navigation –This agent drives the robot towards the 

desired objective state with the information collected from the 

TopologicalMap [17][18]. 

o WayPointNavigation – This agent receives a WayPoint list and 

controls the robot to follow the path. 

o UserOperatedNavigation – This agent receives commands given 

by the user to drive the robot. 

TRANSLATION

ROTATION

Agent::Periodic::UserOperatedNavigation

Agent::Periodic::TopologicalNavigation

Agent::Periodic::WayPointNavigation

TRANSLATION
ROTATION

TRANSLATION

ROTATION

DesiredState
TopologicalMap

TopologicalPosition

WayPoint
ParametricPosition

User Translation and
Rotation

 

Figure 12 - Data flow inside the Navigation Agent. 

From Figure 12 its should be clear why the Navigation agents have to be inside the 

Exclusive agent; All the agents are writing to the same blackboard entry. 
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