

Instituto de Sistemas e Robótica

Instituto Superior Técnico

AGENT-BASED SOFTWARE ARCHITECTURE

TECHNICAL REPORT

RESCUE – COOPERATIVE NAVIGATION FOR RESCUE ROBOTS

FCT SRI/32546/99-00

JOÃO PEDRO FRAZÃO

December 2003

1

Contents

Contents .. 2

1 Introduction... 4

2 Conceptual Model... 6

2.1 Elements.. 6

2.1.1 Agent... 6

2.1.2 Blackboard .. 8

2.1.3 Ports .. 9

2.2 Execution Modes .. 11

2.2.1 Control Mode.. 13

2.2.2 Design Mode... 13

2.2.3 Calibration Mode .. 13

2.2.4 Supervisory Control Mode.. 14

2.2.5 Logging and Data Mode ... 15

3 Application Programming Interface Reference .. 15

3.1 Blackboard .. 15

3.2 Agents ... 16

3.2.1 Control Ports ... 18

3.2.2 Data Ports.. 19

3.3 Agent Types .. 20

3.3.1 Concurrent Agent.. 20

2

3.3.2 Exclusive Agent .. 21

3.3.3 Finite State Machine Agent .. 21

3.3.4 Periodic Agent .. 22

3.4 Using the API.. 22

3.4.1 Defining a Periodic Agent .. 22

3.4.2 Building an Agent Hierarchy. ... 23

4 Agent Architecture Applied to the Rescue Project ... 26

4.1 Top Level Agents.. 27

4.2 Bottom Agents. ... 30

5 References... 33

3

1 Introduction

This report describes an Agent Based Software Architecture that intends to close the gap

between hybrid systems and software agent architectures [7] [8] [9]. The described tool

provides support for task design, task planning, task execution, task coordination and task

analysis for a multi- robot system.

There are currently available several software tools for the mission design and

development for teams of real robots like TeamBots [13], Mission Lab[12] and

CHARON[11]).

TeamBots is a collection of Java application programs and libraries designed to support

multiagent systems. It supports simulation of robot control systems and execution of the

same control systems on mobile robots. It includes a communication package

(RoboComm), and Clay, a library to support behavior-based control systems. The

simulation environment is written entirely in Java. Execution on mobile robots sometimes

requires low-level libraries in C, but Java is used for all higher-level functions.

Mission Lab is a mission specification software that uses visual programming and

reusable components. It is composed by several subsystems such as console display, a

visual configuration editor, a simulator, and a runtime and usability data logging module.

MissionLab generates code that runs under a distributed architecture (e.g., the main

user’s console can run on one computer while multiple robot control executables are

distributed across a network, potentially on-board the actual robots they control.).

CHARON is a language for modular specification of interacting hybrid systems based on

the notions of agent and mode. It provides operations for both an hierarchical description

of the system architecture (referring to the agents relations), and an hierarchical

description of the behavior of an agent. The discrete and continuous behaviors of an

agent are described using modes. A mode is basically a hierarchical state machine, that is,

a mode can have submodes and transitions connecting them. Agents in CHARON can

4

communicate via shared variables and communication channels. Both event-driven

discrete state and time-driven continuous state system descriptions are supported.

Another framework for generic and reusable robotic components that can be adapted to a

number of heterogeneous robot platforms has been developed in recent years at the Jet

Propulsion Laboratory, under the designation "Coupled Layered Architecture for Robotic

Autonomy" (CLARAty). CLARAty consists of two distinct layers: a Functional Layer

and a Decision Layer [10].

The lower abstraction Functional Layer encapsulates functions which interface with the

actual hardware or simulations and provides low to mid-level autonomy. The higher

abstraction Decision Layer provides high-level autonomy and is concerned with mission

constraints and resources. The interface between the two is based on an intentional

overlap between the two layers, allowing the higher declarative level to use high

resolution information and the lower functional level to build abstractions from its basic

functionalities, such as a navigator. There is a clear focus on software modularity and

reusability, as well as on abstracting the functionalities of distinct robotic platforms. The

architecture does not seem to be designed for cooperative multi-robot systems.

The report is divided in three major parts:

First, we present, in Section 2, the conceptual model of the proposed Agent Software

Architecture that supports the work currently being developed in the “Rescue -

Cooperative Navigation for Rescue Robots” project [15].

In Section 3, a reference guide to the application program interface (API) and to the

software architecture is presented. This reference guide is targeted for researchers and

students working on the Rescue Project, as well as to future users of the architecture.

Finally, in Section 4, we describe the Rescue project instantiation of the concepts

involved in this software architecture.

5

2 Conceptual Model

The conceptual model of the agent-based software architecture includes different types of

agents that can be combined both hierarchically and in a distributed manner [1].

The architecture support information fusion between several sensors and the sharing of

information between the agents by a Blackboard [2] and is geared towards the

cooperation between robots.

Agents are generically organized hierarchically. At the top of the hierarchy, the

algorithms associated with the agents are likely to be planners, whilst at the bottom they

are interfaces to control and sensing hardware. The planner agents are able to control the

execution of the lower level agents to service high-level goals. The latter can be

distributed across several processors and/or robots. To offer platform independence, only

the lowest level agents are specific to the hardware, and these have a consistent interface

for communication with the planning agents that control their execution.

The elements of the architecture are the Agents, the Blackboard, and the

Control/Communication Ports. Next, each of them is described in detail.

2.1 Elements

2.1.1 Agent

We define Agent as an entity with its own execution context, its own state and memory

and mechanisms to sense and take actions over the environment.

Rescue Agents have a control interface used to control their execution. The control

interface can be accessed remotely by other agents or by a human operator. Through the

control interface, an Agent can be enabled, disabled and calibrated.

Agents share data by a data interface. Through this interface, the agents can sense and act

over the world.

There are two main classes of agents, Composite Agents and Simple Agents.

6

• The Composite agents are Agents that are composed by two or more agents. The

principle behind composite agents is to abstract a group of related agents. An

agent society can have several types of groups. Groups represent the way that

agents relate or interact with each other’s. Composite agents allow a group of

agents to be faced as a single agent by designers, by operators or by other parts of

the system. For this to be possible, a composite agent must take control over the

agents that compose him. Moreover, composite agents must be easy to use: their

usage should be only a matter of choosing the right type of composite agent and

then plugging the controlled agents.

• Simple agents are agents that do not control other agents; they do not even need to

know about the existence of other agents. Simple agents represent hardware

devices, data fusion and control loops.

For now the supported agent types are:

o Goal-Based Agent: a composite agent that knows other agent’s

actions, the context in which to apply them and the expected result of the

actions to build plan(s) to reach the proposed goal, this type of agent is

foresee but not currently implemented.

o Finite State Machine Agent: a composite agent used to model

complex interactions between agents. Each plugged Agent is associated to

a state of the FSA. The execution of the FSA given an input sequence of

events makes the FSA go through a sequence of states. In each of the

states, the associated controlled Agent is executed. Therefore, the state

sequence implies the sequential execution of the controlled agents.

o Concurrent Agent: composite agent that represents the

simultaneous execution of two or more agents. All the agents plugged on

this composite agent will execute simultaneously.

o Exclusive Agent: This composite agent represents the exclusive

execution of agents. It is used to make sure that only one of the plugged

7

agents is executing at a given time. This is a type of agent similar to the

micro-agents of the SocRob project [3].

o Periodic Agent: An agent that executes a given function

periodically. The period is specified. This agent can be used for data

fusion and control loops.

o Sensor Agent: A driver or a server to a hardware device of the sensor

type. These are customized made for each type of sensor. Usually they

take data from the sensor to the blackboard.

o Actuator Agent: A driver or a server to an hardware device of the

actuator type. These are customized for each type of actuator. Usually they

take commands from the blackboard to the actuator.

The possible combinations among these agent types provide the flexibility required to

build a Mission for a cooperative robotics project, such as the Rescue project [1]. For

special interactions that are not currently supported, the architecture is open to include

other types of agents.

We refer to the mission as the top-level task that the system should execute. In the same

robotic system, we can have different missions. The robotic system runs a mission

similarly to an operating system running an application. The mission is a particular agent

instantiation. The agent’s implementation is made in a way to promote the reusability of

the same agent in different missions [1].

2.1.2 Blackboard

The Blackboard is a distributed structure that gives support to the data exchange

between the Agents. Each entry on the blackboard is a collection of samples ordered by

their creation time. Since all the data shared between the agents goes through the

blackboard, reads and writes are concurrent to maximize performance.

8

2.1.3 Ports

Ports are a handy abstraction to keep the agents decoupled from other agents. When an

agent is defined, his ports are kept unconnected. This approach enables using the same

agent definition in different places and in different ways. There are two types of ports:

control ports and data ports (Figure 1).

Agent A

BlackBoard
Output Control Port

Data Input Port

Input Control Port

Data Output Port

... DataEntry

DataEntry

Figure 1 – Agent Control and Data Ports.

Control ports are used within the Agent hierarchy to control agent execution.

Each agent is endowed with one upper control interface. The upper interface has two

defined control ports. One of the ports is the input control port; we can see it like the

request port from where the agent receives notifications of actions to perform from

higher-level agents. The other port is the output control port through which the agent

reports progress to the high level agent. This is what we denote as a consistent interface

for control.

Composite agents also have a lower level control interface from where they can control

and sense the agents beneath him. The lower level control interface is customized in

accordance to the type of agent. For instance, a Finite State Machine Agent

has as many lower level control ports as agents that he is controlling. An additional data

input port is used to enable the agent receiving events (Figure 2).

9

State Machine Agent

Output Control Port

Agent C

Input Contol Port

Agent B

Data Port

Figure 2 – A Composite Agent and two controlled agents beneath him.

Data ports are used to connect the agents to the blackboard data entries, enabling agents

to share data. More than one port can be connected to the same data entry. Several agents

can be reading from the same place at the same time (Figure 3). However if a data entry

has more than a write port connected, some sort of contention resolution mechanism

(such as a Exclusive Agent) must be used.

Agent A

BlackBoard
Output Control Port

Data Input Port
Data Output Port

Agent B

data

data

Data Output Port

Figure 3 – Agent A is writing a value on the Blackboard that Agent B is reading.

The data ports are linked together through the blackboard. For configuration flexibility of

the agent’s hierarchy, the agent ports are not assigned in the definition of the agent. Ports

are assigned in the instantiation of the agent hierarchy.

10

Each agent also defines a new scope (his scope) inside of the blackboard. The scope can

be viewed as the context of the agent.

2.2 Execution Modes

Traditionally, in Robotics, there is a trend towards giving importance only to the run-time

impact of the robotic system architecture. Unfortunately, during several research phases,

robots are stopped most of the time. Much time and resources are consumed in system

design, system calibration and system analysis. These are very relevant issues often

forgotten by Robotics researchers. A well-designed architecture targets the support and

speed-up of these development phases [16].

Usually, properties such as system distribution and concurrency are relevant during the

mission execution, since they provide better resource allocation and robustness.

Centralization and persistency are important properties when dealing with the robots

prior to the mission execution or handling the data acquired after the mission execution.

Those properties also help managing different missions for a team of robots.

Even during mission execution, system distribution is not required all the time for all the

aspects. To control the robots it is better to think of them as a fleet, and to be able to exert

control over the fleet from a central place, when needed.

Under this architecture, a different execution mode exists for each development phase of

a multi-robot system.

The system hardware is composed by a central station and by the robots. Despite the fact

that some robots do not have a computer onboard (e.g., the blimp in the Rescue project),

it is understood that there is a computer that controls such robot(s). The robots and the

central station use a wireless network for communication.

The centralized execution modes of the software architecture are located on the central

station. In spite of being centralized, they do interact with the robots (Figure 4).

The control mode follows a distributed approach. This mode is spread across the robots,

however can be controlled from the central station (Figure 4).

11

Mission and Fleet Management
Station Control

Design Calibration
Supervisory
Control and
Monitoring

Data and
Debug

Robot::Atrv Robot::Bimp

wireless

Run-time
ControlRun-time

Control

Figure 4 – System Execution Modes – Example for the rescue project.

Next, we describe each of the five execution modes available on the Software

Architecture.

First, we describe the Control Mode that refers mostly to the run-time interactions

between the elements. Afterwards, we describe the Design Mode, the Calibration

Mode, the Supervisory Control Mode and finally the Logging and Data Mode.

12

2.2.1 Control Mode

The control exerted by an upper-level agent over a lower-level agent is accomplished

through special and well-defined functions: start, stop, set and reset. In this

sense if we stop the agent that encapsulates the whole fleet, he will request his lower-

level agents to stop, so a cascading reaction will stop all the agents’ hierarchy inside each

of the robots, from the top down to the lowest level hardware agents, including the

robots. A similar behavior happens with the start command.

2.2.2 Design Mode

The Design Mode is similar to a graphics drawing program. In these programs, there are

different tools for the different graphic objects, such as lines, squares and so on.

In the Design Mode, instead of drawing tools for each type of graphic we have a drawing

toolbox for each type of the supported agents, plus one additional toolbox for linking

agents written in pure code. The output is a meta-language that represents an instantiation

of the supported agents or the included code files when the agent is implemented in pure

code. The language describes the connections between the agents. This meta-language is

then transferred to the target robots for execution.

Currently we are developing the language. All the support to the language instantiation

has been developed.

2.2.3 Calibration Mode

Usually, robots have controllers, sensory processing and even hardware that must be

configured or calibrated. Controllers, behaviors and perceptual processes have parameters

that must be tuned. Usually this data is kept in text files for ease of modification without

the need to recompile the code. For more complex calibration procedures (like color

segmentation) special configuration process must be executed sometimes.

To simplify the calibration procedure for the robot fleet, each agent has an associated

calibration window, which can be requested remotely before the start of the mission. The

13

calibration data is persistent and can be used in a later mission. To keep management of

the fleet a simple job, the calibration data is stored in the central station. This data is

distributed to the robots before run time.

The operator does the calibration following the instructions appearing in the remote

window. For each agent involved the mission, the program asks the operator if he/she

wishes to make a new calibration, to skip, to save or to load a previous one. This is done

in a top-down manner. Answering “skip” to the agent that encapsulates the whole fleet

will produce the result of all robots with all their agents being calibrated by the latest data

used.

This mode provides support on managing the data calibration files. It also supports the

way the various data types are written and read from the files.

2.2.4 Supervisory Control Mode

Each of the agents has, in addition to the Calibration window, an associated Supervisory

Control window, corresponding to the Supervisory Control Mode, designed to be user-

friendly. Therefore, the agent that controls the motors has an user-interface appropriated

for its specific task. This interface is different from the user-interface to a (higher-level)

planner agent. There are common features to all agents like the request to start, the

request to stop or the request to logging. All the common features are provided by the

mode window in the form of buttons and text boxes.

The supervisory control window uses the same program-interface through which the

agents receive control requests from higher-level agents and get data from the same

program-interface through which the agents report success, failure or progress to the

higher-level agents. The only difference is the use of a graphical window for ease of

human use. If the operator chooses to control an agent from the hierarchy, the framework

should disable all control requests arriving at the controlled agent from other agents.

In the supervisory control window, there is also a blackboard view. In the blackboard

view, the supervisor can consult or modify the various types of variables. This is an

extension of the blackboard view interface of the SocRob project [14].

14

2.2.5 Logging and Data Mode

Each of the agents can keep a logging file. if the supervisor chooses an agent whose

activities are to be logged, that file is written locally inside each of the robots. After the

mission ends, the log files are stored in the central station. During run-time, an operator

can also choose to consult the logging of a particular agent. This mode logs, with the

corresponding time tag, all the requests arriving and all reports departing an agent.

Changes in the variables inside the blackboard can also be selected to be automatically

logged by the framework with the corresponding time tag. Additional logging should be

made inside the code of the agent. The framework provides a program interface for doing

so, without the need of opening files and managing files.

3 Application Programming Interface Reference

The concepts presented in this software architecture follow an Object Oriented approach.

This project was developed using C++ and CORBA. We have chose C++ because it gives

the best compromise between performance and the Object Oriented flexibility. Whenever

more flexibility was needed, CORBA was used. CORBA was also used for the

communication between the robots. We have chosen to give preference to the C++

standard library. For the future developers, namely these working on image processing, it

is advised the use of the OpenCV library from Intel. To connect the system to one of the

robots we have used the iRobot mobility library [4] [5] [6].

3.1 Blackboard

The blackboard is a shared memory system. The blackboard can store several types of

data variables:

FloatVar

FloatVectorVar

IntVar

IntVectorVar

15

CharVar

CharVectorVar

Usage:

FloatVectorVar Velocity(“RobotVelocityXYTheta”,3,10);

This line creates a data entry called “RobotVelocityXYTheta” that is a vector

composed of three Floats. The data entry can hold a history of ten velocities.

BBAddEntry(&DataEntry);

This method adds a previously created data entry to the blackboard.

3.2 Agents

All the agent types share a common set of features, so we have an abstract class Agent

that represents and implements those features. Some of the methods described here are

CORBA methods; this means that they can be called over the network [4].

First the Agent is created with the New(name) method, and the memory is allocated.

Next, the framework calls the Initialize() function that initializes the execution

context of the agent.

In the Stopped state, the agent is prepared for execution but remains stopped. Here, he

can receive a Calibration event and start the calibration process. The Agent can also

receive the StartActivity event. When that happens, the OnEntry() function is

called once and after that the Agent will run the Activity() function until he receives

a StopActivity event. Where the framework calls the OnExit() function once and

then the agent returns to the Stopped state.

16

StoppedOnEntry()

OnExit()Activity()

MemoryAlocated

StartActivity delete

StopActivity

* *

New

Initialize

Calibration

Calibrate
end

Figure 5 - The life cycle of an Agent

The agent can only be destroyed on the Stopped state.

Each agent has a uniquely identified name given when the agent is created.

Methods:

Virtual Initialize()

Virtual OnEntry()

Virtual Activity()

Virtual OnExit()

Virtual Calibrate()

17

3.2.1 Control Ports

The purpose of the control ports is to control the execution of the agent. All of the

available functions can be called through the network. Control port operations are

represented by functions, given that all the agents have always the same type and number

of control ports.

StartActivity (timeout)

This function starts the agent activity. This is a handshaking protocol. The function

is blocking until the timeout elapses. If after the timeout the called agent does not

start his activity then the caller Agent is released. The timeout value should be set to

the maximum expected communication delay.

This function throws a CommunicationError exception in the case of a

timeout.

This function is a hierarchical function (see Composite Agents).

StopActivity (timeout)

This function stops the agent activity. This is a handshaking protocol. The function

execution is blocked until the timeout elapses. If, after the timeout, the called agent

does not stop his activity, then the caller Agent is released. The timeout value

should be set to the maximum expected communication delay.

This function throws a CommunicationError exception in the case of a

timeout.

This function is a hierarchical function (see Composite Agents).

Calibrate (timeout, file)

Calling this function starts the calibration process of the Agent. If, after the timeout,

the agent did not start the calibration process, the function throws a

CommunicationError exception, and the caller will be released. File is the file

18

from where the agent reads the calibration data. If file is null, the agent will start the

interactive calibration process.

This function is a hierarchical function (see composite agents).

StartLog();

StopLog();

SetLogFile(Path/File);

3.2.2 Data Ports

An Agent receives and sends blackboard data through the data ports. The ports are

required to make an indirection which decouples the agent implementation from the

agents use.

Every agent has a port table that connects a given PortName to a given BBentry.

There are several types of data ports, such as integer, float and char. All these

types exist in vector form too.

Port Types:

FloatPort

FloatVectorPort

IntPort

IntVectorPort

CharPort

CharVectorPort

Declaration example:

FloatVectorPort *VelocityPortPointer;

19

Reading:

GetSampleByTime(timeStamp,&sample)

GetSampleBySeq(int,&sample)

GetSampleByOrder(int,&sample)

GetSampleLast(seqnumber,&sample)

Writing:

PutSample(&sample)

AgentPortsMethods:

AddNewPortToAgent(“PortName”,Portpointer)

BindPortToBBEntry(“AgentPath/PortName”,

DataEntryPointer);

3.3 Agent Types

3.3.1 Concurrent Agent

This is a Composite Agent. The purpose of this agent is to run agents in parallel: it should

be used when two or more agents share the same life period.

When a hierarchical method is called on the concurrent agent, the agent calls the

corresponding methods of all the agents added to him.

20

AddAgent(Agent)

This method adds an Agent (any type of agent) to the Concurrent Agent. This

method automatically connects the control ports of the agents. This method can

only be called between the new() constructor and the Initialize() method.

3.3.2 Exclusive Agent

This is a Composite Agent. The purpose of this agent is to run the added agents one at a

time: It should be used when two or more agents share the same life period but they

should not be executed simultaneously. This agent can be used to model some sort of

exclusion mechanism.

This agent is similar to the SocRob project micro-agents that run one plugin of a set of

plugins at a time. The Exclusive Agent chooses which agent to run when he receives the

event associated with that Agent.

The Exclusive Agent has a data port called Select to receive the events.

AddEventAgent(event, agent)

This method adds an agent (of any type) to the Exclusive Agent. The added agent is

associated with the event given. Whenever this event is detected the agent is started.

3.3.3 Finite State Machine Agent

This is a Composite Agent. The purpose of this agent is to execute a different agent in

each state of a state machine. Whenever a state is reached, the Agent associated with that

state is started.

The Finite State Machine Agent has a data port called Event to receive the events.

The Finite State Machine Agent has a special port called State. Whenever a Finite

State Machine Agent changes the port State, it is updated with the new state.

21

AddState (agent)

This method adds an agent (of any type) to the Finite State Machine Agent. This

Agent is associated with a state, and the name of the state is the name of the

agent.

AddTransition (event, state1, state2)

This method adds a transition (triggered by event) from state1 to state2

MarkFirstState (state)

This method marks state as the starting state of the Finite State Machine.

3.3.4 Periodic Agent

This agent runs the virtual method PeriodicActivity() in a loop with the period

chosen. The user should override this method with his/her own function.

He can also override the OnEntry(), OnExit() and Initialize() functions.

SetPeriod(timeval);

This function sets the period timeval for the PeriodicActivity.

Virtual PeriodicActivity();

The framework calls this function periodically. The user should redefine this

function with the required functionality. This function is already called in loop.

This is similar to the method function of the SocRob Project.

3.4 Using the API

3.4.1 Defining a Periodic Agent

In this section, we give a simple example of how to define a periodic agent:

#include “Agents.h”

include for the Abstract class Periodic Agent

22

class MyAgent:public PeriodicAgent

FloatPort *VelocityPortPointer; //port declaration

Float velocitySample; // sample declaration

MyAgent() {

On the constructor we give a name to the ports:
AddNewPortToAgent(“PortName”, VelocityPortPointer);

}

virtual PeriodicActivity {

This function is called in loop.

First, in the beginning of the loop step, we should read the BB variables.

Reading from the port:
VelocityPortPointer->GetSampleLast(velocitySample);

User code: here we should put the code

/* CODE HERE */

At the end of the loop step, we should actualize the BB variables:

Write a value to the data-port:
VelocityPortPointer->PutSample(3);

}

3.4.2 Building an Agent Hierarchy.

In this section we give a simple example of how to instatiate agents and build a small

hierarchy (Figure 6).

23

Actuator

ExclusiveAgent

ConcurrentAgent

PeriodicAgent2PeriodicAgent1

BlackBoard

Command Data Port

Data Port

Data Port

Event

Data Port

Figure 6 – Small agent hierarchy

In this example the ExclusiveAgent and the Actuator agent run in parallel

because they are “inside” a concurrent agent. The actuator agent picks a command from

the Blackboard that it sends to the hardware atuator device.

Inside the Exclusive agent there are two periodic agents that send in the example,

velocity commands to the actuator agent. The active periodic agent is chosed by

writing an event on the blackboard entry called “event”. The ExclusiveAgent,

upon detection of event1 starts the agent PeriodicAgent1, when he detects the

event2 he stops the PeriodicAgent1 and starts the PeriodicAgent2 and so

on.

24

Intanciating the periodic Agents:

MyAgent PeriodicAgent1(“PeriodicAgent1”);

MyAgent PeriodicAgent2(“PeriodicAgent2”);

Intanciating a Exclusive Agent:

ExclusiveAgent varExclusiveAgent(“ExclusiveAgent”);

Inserting two Periodic Agents on the Exclusive Agent

varExclusiveAgent.AddEventAgent(“Event1”,PeriodicAgent1);

varExclusiveAgent.AddEventAgent(“Event2”,PeriodicAgent2);

Intanciating an Concurrent Agent

ConcorrentAgent varConcorrentAgent(“ConcurrentAgent”);

Inserting one Actuator Agent and a Exclusive Agent to the Concurrent Agent:

varConcurrentAgent.AddAgent(ExclusiveAgent);

varConcurrentAgent.AddAgent(ActuatorAgent);

Intanciating the data entries on the Concurrent Agent blackboard:

FloatVar VelocityEntry(“velocity”,1);

ConcurrentAgent.BBAddEntry(&VelocityEntry);

charVectorVar Event(“event”,256,1);

ConcurrentAgent.BBAddEntry(&Event);

Connecting the Periodic Agents Ports together

ConcurrentAgent.BindPortToBBentry(“AnExclusiveAgent/Periodi

cAgent1/VelocityPort”,VelocityEntry);

ConcurrentAgent.BindPortToBBentry(“AnExclusiveAgent/Periodi

cAgent2/VelocityPort”,VelocityEntry);

25

ConcurrentAgent.BindPortToBBentry(“AnExclusiveAgent/select”

,Event);

If the agent hierarchy is not started the agents do not do any kind of work.

To start the agent hierarchy we simple need to start the Concurrent Agent:

ConcurrentAgent->start();

To change to periodic Agent1:

ConcurrentAgent->EventPort->PutSample(“Event1”);

To change to periodic Agent2:

ConcurrentAgent->EventPort->PutSample(“Event2”);

Finally, to stop the agent hierarchy we simple need to stop the Concurrent Agent:

ConcurrentAgent->stop();

4 Agent Architecture Applied to the Rescue Project

Under the reference scenario of the Rescue project, the land robot should be able to build

a topological map, and be able to locate itself on that map, as well as to show different

navigation capabilities, such as topological navigation with obstacle avoidance. With the

topological navigation the robot should be able to go from one topological state to an

arbitrary topological state. He should be able to change from Topological Navigation to

either Metric Navigation or User Operated Navigation. All the values on the blackboard

of the land robot can be read over the network.

The following sections describe the top-down instantiation of such a Rescue Mission.

26

4.1 Top Level Agents

The Figure 7 shows the first system decomposition. Sensor and Actuator agents where

kept out of the diagram for the ease of interpretation. In addition to one agent per sensor

and one per actuator, the system is split into five main Agents.

Agent::Concurrent::Atrv

 Figure 7 – System Top Agent

Agent::Periodic::TopologicalLocalization

Agent::Periodic::TopologicalMapping Agent::Concurrent::NavigationSystem

Agent::Periodic::MetricLocalization Agent::Concurrent::FeaturesTransform

27

Each of the agents is responsible for a subsystem:

o Features Transform – This group of agents is responsible for

picking raw data from the several sensors (sonar, laser, compass and

image). The raw data is subsequently transformed into features that the

Topological agents can use [17][18].

o Navigation System – This group of agents is responsible for the

either the topological or the metric navigation of the robot. The Navigation

sub-system includes obstacle avoidance behavior.

o Topological Localization – This agent gets the data-features and,

comparing then with information taken from the topological map,

determines where the robot is on the topological map [17][18].

o Topological Mapping – This agent is responsible for picking the

features and building the topological map [17][18].

o Metric Localization – This agent is responsible for picking raw

data from several sensors (odometric, GPS and compass). This data is

fused together to determine the robot metric position and velocity.

28

Agent::Periodic::TopologicalMapping

Agent::Concurrent::FeaturesTransform

Agent::Concurrent::NavigationSystem

TOPOLOGICAL
MAP

&
POSITION

Agent::Periodic::TopologicalLocalization

Agent::Sensors

Agent::Periodic::ParametricLocalization

RAW DATA FEATURES

RAW DATA POSITION
VELOCITY

T.M
AP

T.M
AP,

T.PO
SITIO

N

T.POSITION
T.MAP

Agent::Motors

TRANSLATION
ROTATION

Figure 8 – Data Flow for the first system decomposition.

The Figure 8 depicts the data exchanged by the top rescue agents.

The arrows represent data connections between the agents. As explained before these

connections are made throughout the blackboard. Arrows represent more than a value

being exchanged. When an arrow is simple, it means that the starting agent is writing the

data on blackboard entries. The pointed agent is reading the data from the blackboard

entries. Only the TopologicalMap and TopologicalPosition data entries are

represented.

29

If the arrow forks it means that more than one agent is reading the same data. When the

arrow is double it means that the agent is reading and writing data. In the diagram, the

TopologicalLocalizationAgent is reading the TopologicalMap data and

writing the TopologicalPosition data.

4.2 Bottom Agents.

Agent::Concurrent::NavigationSystem

Figure 9 – Navigation System decomposition.

The navigation system includes an ObstacleAvoidanceController agent, an

ObstacleDetection agent, and a Navigation agent. The Navigation agent is

an Exclusive agent that multiplexes the several Navigation behaviors.

Agent::Exclusive::Navigation Agent::Periodic::ObstacleDetection

Agent::Periodic::ObstacleAvoidanceControler

30

OBSTACLEMAP

TRANSLATION
ROTATION

Agent::Periodic::ObstacleDetection

Agent::Periodic::ObstacleAvoidanceControler

LASER

SONAR

TRANSLATION
ROTATION

Agent::Exclusive::Navigation

Figure 10 – Data exchange inside the Navigation System.

The Exclusive Agent Navigation chooses the desired robot translation

and rotation. The ObstacleAvoidance controller chooses the possible

Translation and Rotation given the ObstacleMap. The Laser data and Sonar data

come from the Sensor agents. The translation and rotation commands end on the

Motors agent (see Figure 8).

Agent::Table::Navigation

Agent::Periodic::UserOperatedNavigation

Agent::Periodic::WayPointNavigation

Agent::Periodic::TopologicalNavigation

Figure 11 - Navigation Behaviors inside the Exclusive Navigation Agent

31

Since the agents are inside a Exclusive Agent this means that they never execute

simultaneously.

o Topological Navigation –This agent drives the robot towards the

desired objective state with the information collected from the

TopologicalMap [17][18].

o WayPointNavigation – This agent receives a WayPoint list and

controls the robot to follow the path.

o UserOperatedNavigation – This agent receives commands given

by the user to drive the robot.

TRANSLATION

ROTATION

Agent::Periodic::UserOperatedNavigation

Agent::Periodic::TopologicalNavigation

Agent::Periodic::WayPointNavigation

TRANSLATION
ROTATION

TRANSLATION

ROTATION

DesiredState
TopologicalMap

TopologicalPosition

WayPoint
ParametricPosition

User Translation and
Rotation

Figure 12 - Data flow inside the Navigation Agent.

From Figure 12 its should be clear why the Navigation agents have to be inside the

Exclusive agent; All the agents are writing to the same blackboard entry.

32

5 References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design Patterns: Elements of Reusable Object

Oriented Software", Addison-Wesley, Reading, MA, 1995.

[2] Hays-Roth, B., “A Blackboard Architecture for Control”, Artificial Intelligence, 26:pp. 251-321,

1985.

[3] P. Lima, L. Custódio, “Artificial Intelligence and Systems Theory Applied to Cooperative Robots:

the SocRob Project”, Actas do Encontro Científico do Robótica 2002 - Festival Nacional de Robótica,

2002.

[4] Michi Henning, Steve Vinoski “Advanced Corba Programing with C++”, Addison Wesley, 1999.

[5] Bjarne Stroustrup. “The C++ Programming Language” , Addison-Wesley, Reading, 2000.

[6] “Mobility Robot Integration Software User’s Guide”, iRobot Corp. 2000.

[7] H. Bruyninckx. “OROCOS: Design and Implementation af a Robot Control Software

Framework". Proc. of IEEE ICRA 2002, April, 2002

[8] Y. Hur, I. Lee. “Distributed Simulation of Multi-Agent Hybrid Systems", IEEE International

Symposium on Object-Oriented Real-time Distributed Computing (ISORC), April 29-May 1, 2002

[9] K. Konolidge. “Saphira Robot Control Architecture Version 8.1.0", SRI International, April,

2002

[10] Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, Won Soo Kim, "CLARAty: An

rchitecture for Reusable Robotic Software," SPIE Aerosense Conference, Orlando, Florida, April

2003

[11] R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur, G. Grudic, V. Kumar, I. Lee, J. P. Ostrowski, G.

Pappas, J. Southall, J. Spletzer, and C. J. Taylor, "A framework and architecture for multirobot

coordination," in Proc. ISER00, Seventh International Symposium on Experimental Robotics,

Honolulu, Hawaii, Dec. 2000.

[12] D. MacKenzie, R. Arkin, and J. Cameron, "Multiagent mission specification and execution,"

Autonomous Robots 4(1), pp. 29--52, 1997

[13] Emery, R., Balch, T., Bruce, J., Lenser, S., et al. "CMU Hammerheads Team Description,"

submitted for RoboCup-2000: Robot Soccer World Cup IV, Springer Verlag, 2001.

33

http://robotics.jpl.nasa.gov/tasks/claraty/overview/publications/03_nesnas_challenges_iros.pdf

[14] P. Lima, R. Ventura, P. Aparcio, L. Custdio. “A Functional Architecture for a Team of Fully

Autonomous Cooperative Robots", RoboCup-99: Robot Soccer World Cup III, Lecture Notes in

Computer Science. Springer-Verlag, Berlin, 2000.

[15] P. Lima, M. Isabel Ribeiro, Luis Custodio, Jose Santos-Victor, "The RESCUE Project -

Cooperative Navigation for Rescue Robots", Proc. of ASER'03 - 1st International Workshop on

Advances in Service Robotics, March 13-15, 2003 - Bardolino, Italy, 2003

 [16] D.C. MacKenzie and R.C. Arkin. “Evaluating the Usability of Robot Programming Toolsets"

The International Journal of Robotics Research, Vol. 17, No. 4, pp 381-401, 1998.

[17] A. Vale, M. I. Ribeiro. “Environment Mapping as a Topological Representation", 11th

International Conference on Advanced Robotics, Coimbra, 2003.

[18] A. Vale, M. I. Ribeiro. “A Probabilistic Approach for the Localization of Mobile Robots in

Topological Maps", Proc. of the 10th IEEE Mediterranean Conf. on Control and Automation, Lisboa

2002.

34

	Contents
	Introduction
	Conceptual Model
	Elements
	Agent
	Blackboard
	Ports

	Execution Modes
	Control Mode
	Design Mode
	Calibration Mode
	Supervisory Control Mode
	Logging and Data Mode

	Application Programming Interface Reference
	Blackboard
	Agents
	Control Ports
	Data Ports

	Agent Types
	Concurrent Agent
	Exclusive Agent
	Finite State Machine Agent
	Periodic Agent

	Using the API
	Defining a Periodic Agent
	Building an Agent Hierarchy.

	Agent Architecture Applied to the Rescue Project
	Top Level Agents
	Bottom Agents.

	References

