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1 Introduction

During its third year, the research work on the RESCUE project was spread over several
topics of short and long term application to real robots and scenarios, some of them new
within the project, others extending past activities. This slightly more detailed report of
the activity carried out during year 3 summarizes the progresses made. It is composed of
three main sections (navigation, distributed planning and architectures) and two appendices
with the full version of technical reports describing the work on the vision-based navigation
of the aerial robot and the software plus functional architectures. The latter is the final
activity report of the project grantee, João Frazão, whose grant within the project finished
last October 2003.

In Section 2, the progresses on both the vision-based navigation of the aerial (blimp)
robot and the topological navigation and mapping of the land robot are presented. Section 3
introduces work on distributed planning for a multi-robot rescue team, based on distributed
Artificial Intelligence and Multi-Agent Systems techniques, and tested on a simulator which
emulates scenarios that could well be the subject of future applications using real robots, as
an extension of the current project. Finally, Section 4 summarizes the concepts concerning
the software and functional architectures that will support the project development, and its
implementation.

2 Navigation

2.1 Vision-Based Control of the Aerial Robot

To perform positioning or trajectory following tasks with an aerial robot, the development
of control algorithms that overcome the underlying limitations of the system dynamics and
kinematics, as well as the external disturbances, is required. In the RESCUE project, the
only sensor used is a vision system consisting of a micro-camera placed onboard the aerial
blimp robot, whose images are subject to real-time processing. From the homographies
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between consecutive images and assuming some prior information regarding the surrounding
environment, it is possible to estimate velocities and displacements of the robot in 3D space.

Control methodologies were developed for the aerial robot that enable the system to
accomplish positioning or trajectory following tasks, surpassing some limitations imposed
by the physical system and the sensor. Image processing algorithms that enable obtaining
the vehicle pose (position + orientation) and velocity were studied. Several types of linear
and non-linear controllers were used to control the vehicle velocity, as well as its heading in
3D space. Two strategies for the reference definition were proposed, one based in position and
coordinates in Cartesian space and the other based in image measurements, thus avoiding
the need for high precision camera calibration.

The work developed consisted of system modelling and parameter identification, as well
as control and image processing tests in a special-purpose simulator developed within the
project. Furthermore, experiments were made with the real setup in which the algorithms
were implemented, running in real-time.

More detailed information on this work can be found in Appendix A.

2.2 Land Robot Localization and Mapping

To support the navigation of the land robot a topological map was developed based on a
probabilistic approach on the world representation as described in [2]. The robot perception
is condensed in observations, ot, a vector where each component relates to a different feature.
This perception has to be recorded in a map, that is composed by a set of states. The robot
estimated location is the map’s state that most likely produced the observations acquired by
the robot sensors during a given time interval. The proposed localization procedure, detailed
in [4], was developed in previous years of the project.

In the project third year, the work concentrated on the mapping aspects that support
the navigation, in particular those of feature extraction and feature selection. These issues
are described in the sequel.

2.2.1 Feature Extraction

Topological maps provide useful abstractions of an environment, showing natural features
that characterize particular locations or places. The algorithm developed in the frame of
the RESCUE project, [1], is intended to adapt to the available sensors, this meaning that
adding or removing different types of sensors enlarges or reduces the number of properties
available to the algorithm. The raw data provided by the sensors requires a signal processing
procedure before the implementation of the map building.

The projection of high-dimensional data onto low dimensional subspaces is called feature
extraction. This extraction causes a loss of information in most cases. A feature extraction
method must have the following properties [5]:

• Robustness to small displacements of the robots by means of capturing relevant features
of the environment,

• Invariant to rotation,

• Invariant to lighting conditions,
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• Invariant to occlusion,

• Fast computation,

• Capacity to compress the images as much as possible while retaining pertinent infor-
mation.

Several features can be used on topological navigation: geometric features such as lines,
corners, edges, shapes and other kind of features as color, textures and whatever can be
considered a feature to discriminate a landmark. In outdoor environments, we should take
into account which are good features to represent a landmark and carry out a selection
procedure. These features can be different from those used in indoor environments.

An important goal for mapping is to achieve a good and optimized representation of
features to improve the performance of matching processes and store the feature data in a
small space. The feature vector ft, is extracted at each time instant t, from the observation
data ot, by a nonlinear function FE:

ft = FE(ot), (1)

where FE : IRn −→ IRm and ft(i) is the i-th feature value referred to time instant t,
i = 1 . . .m.

As an extraction function, FE, shrinks the amount of data, retaining the essential infor-
mation of sensor data. For that reason,

FE−1(ft) ⊃ ot,

which means that different observation vectors could result on the same feature. When this
convergence on the same feature occurs, it is important to identify if the observations were
acquired in the same place, or in places where it is not important to distinguish the features.

Edges and Hough-Transform
As described in [13], the image dependencies due to the lighting geometry and illumi-

nance, mainly in outdoor environments, require a colour image normalization procedure.
This drawback points towards the edges extraction. Referring to the bibliography, a couple
of authors present different approaches using edges extraction, for environment representa-
tion and robot navigation [6], [7], [8], [9] and [5].

To extract edges from an image, it is necessary to apply a specific filter (Sobel, Prewitt,
Roberts, Gaussian, or other). However, in outdoor environments, where the scenario is
unstructured, the edges may present noisy information. According to this fact, it is necessary
to remove or, at least, reduce the superfluous data. As proposed by [10] and [12], the straight
lines are important geometric information from the images, mainly the vertical ones. A
straight line is defined by (d, θ),

x cos θ + y sin θ = d,

where (x, y) are the coordinates of an image pixel. Consequently, a powerful technique is
used: the Hough Transform (HT) to the edges, [11]. The result is an histogram of straight
lines for different directions, as shown in Figure 1 for real acquired outdoor data, where the
brightness corresponds to the amount of pixels that belong to a specific line. To select only
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the vertical edges, the directions chosen are around 0 and 180 degrees, as exemplified in
right-bottom image of Figure 1. The kedges straight lines with more pixels (high level on the
histogram) are selected and considered as the edges’ features extracted from the image, i.e.,

ft = FE(ot) = {(r1, θ1), . . . , (rkedges , θkedges)}. (2)

Part (b) of Figure 1 shows the result.
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Figure 1: Example of vertical edges detection. (a) - original image; (c) - the Hough Transform
of edges; (d) - the same only around vertical directions; (b) - the features extracted: vertical
edges

Histogram parameterizations
Even with the light and geometric dependencies, the colour information is still an im-

portant source of information. Applying a normalization procedure, as suggested by [13], or
simply, using the HSV colormap in spite of RGB, color histograms are important features.
However, histograms provide large amount of information that could be parameterized. We
tested the parameterization of Hue and Saturation histograms using polynomial and Gaus-
sian functions. A parameterization of each histogram using a polynomial function of order
n requires n + 1 parameters (a0, a1, . . . , an), while by N(µ, σ) requires 2n parameters. The
parameterization error is evaluated using the square error of the original histograms and
the parameterization. Testing in a large amount of images acquired in different places of an
outdoor environment, the Gaussian parameterization errors are significantly lower when the
number of parameters are larger then 4, as shown in Table 1.

The features extracted are the parameterizations, or more precisely, the means and vari-
ances. Equivalently,

ft = FE(ot)

= {(µ1, σ1)H , . . . , (µkhistograms, σkhistograms)H ,

(µ1, σ1)S, . . . , (µkhistograms, σkhistograms)S}. (3)

where H and S correspond to the Hue and Saturation respectively.

Histogram 2D and image segmentation
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] of par- Gaussians Polynomials
ameters H color S color H color S color
2 3214 1087 3247 1889
4 2010 830 3092 1505
6 1937 534 2720 1112
8 714 478 2406 867

Table 1: Comparison of the parameterization error using Gaussian and polynomial functions

Using histograms it is possible to identify regions on the image with similar colors per-
forming the bi-directional histogram along Hue-Saturation colors. Based on the histogram,
the khist2D most significant colors (Hue, Saturation) are selected. For each significant color
we defined a region on the image, explained as follows. The smallest boundary-box that
fits all the pixels with the same color, defines a region. The features extracted from each
boundary-box are the width, the height, the amount of pixels and the variance.

ft = FE(ot) = {(box1 ), . . . , (boxkhist2D
)}

= {(width, height, pixels, variance)1, . . .

(width, height, pixels, variance)khist2D} (4)

The position of the boundary-box on the image is not recorded, since it is much dependent
on the point of view, [16].

PCA and ICA
A common approach used by the authors of [14] and [17] to extract the essential informa-

tion from images is based on the Principal Component Analysis (PCA). A similar technique,
where the components are orthogonal, is the Independent Component Analysis (ICA), cited
in [15]. Both techniques consist in extracting a base, B = {B1, B2, . . . , Bkcomp} from a train-
ing set of images. The projection of the training set into each base B (for PCA or ICA)
provides different energy distribution. The PCA results condenses the energy into the first
components (usually the 2 first retain more than 90%).

Given the size of images the author of [15] proposes to optimize the implementation
dividing the images into sub-images. This approach is also interesting, since the original
images present common areas (for instance: the ground, the sky), as illustrated in Figure 2
acquired inside the campus of Instituto Superior Técnico.

Therefore, the basis depends on the number of components and on the number of sub-
images. This relation is not linear, as exemplified by the results shown in Table 2. This table
describes an example of reconstructed images using PCA (left-side) and ICA (right-side),
with 5,10,15,20,25 components. The columns correspond to the sub-divisions of the images
(1-no division, 4,16-divides the image into 4 and 16 sub-images respectively, as illustrated
in Figure 4). The error is an average the for all pixels (each pixel changes between 0 and
255). When the number of components increases, the error decreases. For instance, the 1st
column of PCA (or ICA), the reconstruction error is zero when the number of components
is larger than 12, since the size of the training set is 12 images. However, the reconstruction
using 5 or 10 components and images divided into 4 sub-images provides an error larger than
when using images divided into 16 or not divided. This is inverted for more components. It
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Figure 2: A training set of images.
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Figure 3: L2 norms of the basis functions using PCA (Left) and ICA (Right)

is related to the images when divided into 4 parts, the sub-images coincides with the ground
or the sky or the buildings.

Figure 4: Left to right: The entire image; Image divided into 4 sub-images; Divided into 16

The features are the projection of the observed images, ot, on the base, B, or equivalently:

ft = FE(ot) = {< ot, B1 >, . . . , < ot, Bkcomp >}. (5)

Both techniques can be applied to the image to each color RGB or HSV, where only HS
is more robust, as explained before.

2.2.2 Feature Selection

As soon as features are extracted it is necessary to define a selection criteria. The quality of
a feature has to be analyzed along two criteria: time/space and correlation with the other
features. The selection along these lines can be illustrated by an example. Let us assume
that there are two type of features: ”colors” and ”geometric forms”, and that the robot
is navigating along three distinct places. If all the places are identified by the same color,
this renders the feature ”color” useless, independent of the ”geometric” information. If two
places are ”red” (the same value for the feature ”color”) and the third place is ”blue”, the
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] of com- PCA ICA
ponents 1 4 16 1 4 16
5 6.6 7.3 6.1 11.5 12.2 8.9
10 1.7 5.7 5.1 2.3 11.0 8.7
15 0 4.4 4.5 0 10.4 8.5
20 0 3.2 4.1 0 8.9 8.3
25 0 2.0 3.8 0 8.0 8.1

Table 2: Comparison of image reconstruction using PCA and ICA

feature ”color” can identify some places, but the ambiguity is still present. In this case, if
the geometric form is the same for the ”red” places, but different for the ”blue” place, it
means that the two features are redundant (the correlations between features is too high).

The main goal of feature selection is the following: given a training set of observations,
find the best features that minimizes the ambiguity and remove the redundant ones. This
is the current topic of work within topological navigation at RESCUE project. The future
research also includes a feature extraction procedure based on textures extraction using
Gabor Filters and/or Nonlinear Operator [18], [3], [14].

3 Distributed Planning for a Multi-Robot Rescue Team

Typically, a rescue operation within a situation of catastrophe involves several and different
rescue elements (individuals and/or teams), none of which can effectively handling the rescue
situation by itself. Only the cooperative work among all those rescue elements may solve
it. Considering that most of the rescue operations involve a certain level of risk for humans,
depending on the type of catastrophe and its extension, it is understandable why robotics
can play a major role in Search and Rescue situations (SaR), especially teams of multiple
heterogeneous robots.

The overall goal of the RESCUE project is to develop a robotic team, constituted by more
than one robot, capable of autonomously handle a rescue operation. This project can be seen
at different levels of abstraction, such as a technological level (e.g., hardware development),
a control level (e.g., motor control), a robot navigation level, and a task planning level, if
an individual robot is considered. If we are to consider a team of robots, new levels must
be added, for instance a level of robot cooperation and a level of mission management. At
these levels, the objectives are making robots cooperate to fulfil their common goals, both
through cooperative planning and cooperative execution. The RESCUE project aims at the
development of an integrated approach to most of referred levels of abstraction, initially for
a simplified rescue scenario and a team of two robots (an aerial one and a terrestrial one).

The work developed on multi-robot planning is mainly focused on the problem of dis-
tributed task planning for a team of heterogeneous robots. However, all considerations
related with technology and utilization of real robots was not an issue in this work. So our
rescue team is composed of agents, virtual entities interacting within a simulated environ-
ment and capable of some intelligent actions, both individual and cooperative.

The problems of task planning, task allocation and cooperative execution is dealt with
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mainly in the areas of Distributed Artificial Intelligence or Multi-Agent Systems. The main
questions to be answered when solving these problems are:

Selection of goals and their allocation among agents Given a non-empty set of (res-
cue) objectives, agents must be capable of selecting the right sequence of goals to be
fulfilled and distributing these goals among them.

Task planning restricted by the agents actions Given a particular goal, an agent must
design a plan of actions that enable it to achieve the goal. Planning in this context
means finding a sequence of actions that takes the agent from an initial state of beliefs
to another state where a certain set of beliefs is included. This plan can include not
only the actions the agent has but also all actions it knows other agents have. There-
fore, plans tend to become non linear, i.e., there are actions to be performed in parallel
by different agents.

Plan execution Besides ensuring that all pre-conditions for the whole plan and each one
of its actions are met, some actions must be synchronized among agents.

Resources management One of the main resources in rescue operations is time, in the
sense that timing is usually vital for the rescue success, not only the plan execution
time but also the planning time. So a tradeoff is needed between the quality of plans
and time to determine them.

Failures recovery The problem here is to decide what to do when premises for the plan
being executed change. Agents must react promptly to changing conditions not only
by deciding what to do next, either adapt the current plan or re-plan, but also in order
to bring the team of robots, if that is the case, to a common and consistent state of
beliefs.

Distributed planning One of the advantages of having several robots is also the possibility
of dividing the computational needs among them. For instance, instead of performing
task planning in only one robot or computer, one might divide it between two, three
or even more robots. The problem of course is to decide who and what each one will
plan.

Coherence and cooperation A known problem in multi-robot/agent systems is the pos-
sibility that one agents actions could invalidate other agents actions, due to, e.g.,
non-shared resources. So it is necessary to ensure at execution time the coherence of
plan being executed.

Communication Obviously, in a multiple robot scenario, communication is always a rele-
vant issue, both because it is limited and the agent must decide what to communicate.

Given all the problems described above, the project work has focused mainly on the
problems of task planning and task allocation in a multi-robot rescue system, assuming that
teamwork (i.e., cooperative tasks) plays an important role on the overall planning system.

An agent architecture has been developed, inspired on a Belief-Desire-Intention (BDI)
architecture [19], considering that each agent interacts with others in the same rescue sce-
nario, with the same interface and ontology. Moreover, the proposed architecture takes into
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account issues as agent heterogeneity, failures recover, cooperation, to name but a few. Be-
sides that, agents equipped with this architecture are prepared to act in a non deterministic
environment (where its state could change without any agent action), incomplete (meaning
that only information agents have is acquired by their sensors which provided only incom-
plete data about the environment state), dynamic (meaning that planning decisions made
for a certain environment state could be invalid when they are executed, claiming for some
re-planning).

Since teamwork is a key aspect of this work, agents need to negotiate the execution of
certain actions, either because an agent does not have the right skills to do it, or it evaluates
that another agent could do it better (with a lower cost). To implement this a Contract-Net
system [20] was developed and integrate in the agent architecture. This system allows agents
to propose and negotiate contracts with other agents, and gives the necessary guarantees for
maintaining signed contracts consistency (i.e., if an agent cannot fulfil a contract it must
inform others involved in that contract).

The main decision process, the planner, was implemented based on a Hierarchical De-
composition Partial Order Planner (HDPOP) approach, with an important extension, the
possibility to handle (plan) the resources needed for each of the tasks [21, 22]. The planner
was developed using the STRIPS language and is supported on a variation of the well-known
A∗ search algorithm, the Iterative Deepening A∗ (IDA∗).

To experiment and evaluate the proposed planning system, a simplified version of a rescue
simulator was also developed. This simulator allows to create virtual rescue scenarios where
rescue teams should face building and forest fires, civilians trapped in collapsed buildings,
and roads blocked. The rescue teams are composed of aerial and land robots, with different
skills. The former could perform a survey of the affected region (for instance, by defining
a topological map and send it to the other robots, namely the land ones). They are also
capable of transporting victims to rescue spots. On the other hand, the latter are endowed
with first aid resources and have the autonomy to decide if the victim might be transport
by air (in which case it contracts an aerial robot to take care of that transport).

Although this work did not cover all the problems mentioned earlier, the results obtained
show that a distributed approach to a rescue problem is clearly an interesting solution when
compared with a centralized one. One might lose some quality of the planning solutions, but
gains more flexibility, redundancy and the possibility of parallelizing the planning process.
One key word emerging from this work and its results was delegation, meaning that agents
should delegate as much as possible given other agents skills, particularly whenever planning
is concerned [23].

4 Software and Functional Architectures

The software architecture developed for the RESCUE project is supported on agent-oriented
programming concepts that provide a systematic method for task design, task planning, task
execution, task coordination and task analysis for a multi- robot system. An application
program interface (API) was implemented and is described in Appendix B, where the work
done is fully described. This reference guide is targeted for researchers and students working
on the RESCUE project, as well as to future users of the architecture, extendable to other
projects.
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The conceptual model of the agent-based software architecture includes different types
of agents that can be combined both hierarchically and in a distributed manner. The ar-
chitecture supports information fusion between several sensors and the sharing of informa-
tion between the agents by a Blackboard (a distributed structure that gives support to the
data exchange between the Agents), and is geared towards the cooperation between robots.
Agents are generically organized hierarchically. At the top of the hierarchy, the algorithms
associated with the agents are likely to be planners, whilst at the bottom they are interfaces
to control and sensing hardware. The planner agents are able to control the execution of
the lower level agents to service high-level goals. The latter can be distributed across sev-
eral processors and/or robots. To offer platform independence, only the lowest level agents
are specific to the hardware, and these have a consistent interface for communication with
the planning agents that control their execution. The elements of the architecture are the
Agents, the Blackboard, and the Control/Communication Ports. Agents communi-
cate with each other through control ports and with the blackboard through data ports. The
latter is effectively another means of sharing information among the agents.

In Robotics research and development, much time and resources are consumed in system
design, system calibration and system analysis. A well-designed architecture targets the
support and speed-up of these development phases. Usually, properties such as system
distribution and concurrency are relevant during the mission execution, since they provide
better resource allocation and robustness. Under this architecture, a different execution
mode exists for each development phase of a multi-robot system. Five execution modes are
available for each of the elements described in the previous section:

Control Mode that refers mostly to the run-time interactions between the elements.

Design Mode

Calibration Mode

Supervisory Control Mode

Logging and Data Mode .

References

[1] P. Lima, M. Isabel Ribeiro, Luis Custodio, Jose Santos-Victor. ”The RESCUE Project
- Cooperative Navigation for Rescue Robots”, Proc. of ASER’03 - 1st International
Workshop on Advances in Service Robotics - Bardolino, Italy, March 13-15, 2003.

[2] A. Vale, M. I. Ribeiro. ”Environment Mapping as a Topological Representation”, Proc.
of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, vol. 1,
pp. 29-34, 2003.

[3] S. Grigorescu, N. Petkov, P. Kruizinga. ”Comparison of Texture Features Based on
Gabor Filters”, IEEE Transactions on Image Processing, 11(10), 2002.

[4] A. Vale, M. I. Ribeiro. ”A Probabilistic Approach for the Localization of Mobile Robots
in Topological Maps”, Proc. of the 10th IEEE Mediterranean Conf. on Control and
Automation, Lisboa, Portugal, 2002.

10



[5] Nikos Vlassis, Yoichi Motomura, Isao Hara, Hideki Asoh, Toshihiro Matsui ”Edge-based
Features from Omnidirectional Images for Robot Localization” Proceedings of the 2001
IEEE Conference on Robotics and Automation, Seoul, Korea, May 2001

[6] M. Mata, J. M. Armingol, A. de la Escalera and M. A. Salichs ”Using Learned Visual
Landmarks for Intelligent Topological Navigation of Mobile Robots” Proceedings of the
IEEE International Conference on Robotics and Automation, September 2003

[7] Pierre Lamon, Illah Nourbakhsh, Björn Jensen, Roland Siegwart ”Deriving and match-
ing image fingerprint sequences for mobile robot localization” In Proceedings of the
IEEE International Conference on Robotics and Automation, Seoul, Korea, May 2001

[8] Mark Fiala, Anup Basu ”Robot Navigation Using Panoramic Landmark Tracking”
Proceedings of Vision Interface pp. 117-124, Calgary, Canada, May 2002

[9] Xiang Sean Zhou, Thomas S. Huang ”Edge-Based Structural Features for Content-
Based Image Retrieval” Pattern Recognition Letters, April 2001

[10] Hyun-Deok Kang, Kang-Hyun Jo ”Self-Localization of Mobile Robot Using Omnidirec-
tional Vision” Proceedings of the 7th Korea-Russia International Symposium, KORUS
2003

[11] Klaus Hansen, Jens Damgaard Andersen ”Understanding the Hough transform: Hough
cell support and its utilization” Journal IVC, vol. 15, pp. 205-218, 1997
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