
RESCUE

Cooperative Navigation for Rescue Robots

2nd Year Technical Report

A. Bernardino, L. Cust�odio, J. Fraz~ao,

T. Krause, P. Lima, M. I. Ribeiro,

J. Santos-Victor, A. Vale

July 17, 2003

1 Introduction

This document is a slightly more detailed report of the work executed during the second

year of the RESCUE project. In Section 2 the topological navigation of the land robot,

in its map building and localization facets, is covered, including experimental results in

outdoors environments. Most of the work described in this section was carried out by the

project members Alberto Vale and Isabel Ribeiro. In Section 3 the vision-based navigation

of the aerial blimp robot is described, namely the development of a motion library to sup-

port future developments. Most of the work described in this section was carried out by

Thomas Krause, a German student who spent 4 months at ISR/IST working in the project,

Alexandre Bernardino and Pedro Lima. Section 4 refers to the design and �rst steps towards

implementation of the software and functional architectures that will support the project

development. Most of the work described in this section was carried out by the project

member Jo~ao Fraz~ao.

2 Topological Navigation of Land Robot

2.1 Map Building and Localization

To support the navigation of the land robot a topological map was developed, which can be

achieved by a probabilistic approach on the world representation. The robot perception is

condensed in observations, ot, that represent the information resulting from the processing

of the raw data acquired at each time instant t.

An observation is a vector where each component relates to a di�erent feature. This per-

ception has to be recorded in a map, that is composed by a set of states S = fsig. Each state,
containing a partial representation of a physical area of the environment, is characterized by

a set of relevant features that support the state identi�cation and prevent state mismatching.

According to the uncertainty of the measurements, each map's state si is represented by a

Gaussian pdf. With this map characterization, the mapping procedure consists in estimating



the mean vectors and the covariance matrices that maximize the probability of all obser-

vations given the environment model, i.e., that maximizes the likelihood function. As this

maximization is a hard problem to solve, a way to overcome the associated computational

burden is by changing the corresponding likelihood function by F (S) in (1), the expectation

of the likelihood given a previous estimation of the model, [6], [7]. The maximization of (1)

is performed through a modi�ed version of the Estimation and Maximization algorithm.

F (s) = E

�
log(p(O j S)) j Sold

	
(1)

The robot estimated location at time instant t, q̂t, is the map state that most likely

produced the observations acquired by the robot sensors during a given time interval, T . The

proposed localization procedure yields a robot estimated location, q̂t = si; note that this does

not mean that the robot physical location (pose) coincides with that of the environment place

that lead to the map state si. According to a probabilistic approach, the current estimated

location, q̂t, is the argument that maximizes the pdf of the location given the observation

sequence OT = fo1; o2; : : : ; ot; : : : ; oTg acquired in the time interval T , i.e.,

q̂t = argmax
qt

P (qt = si j o1; : : : ; ot; : : : ; oT ): (2)

Based on Markov Models, the localization procedure in (2) is similar to the high-dimensional

maximum likelihood estimation problem. This problem is eÆciently solved using a modi�ed

version of the Forward-Backward (FB) algorithm, ([7], [9]), described in [4].

2.2 Feature Extraction

Topological maps provide useful abstractions of an environment, showing natural features

that characterize particular locations or places. The algorithm developed in the frame of the

Rescue project is intended to adapt to the available sensors, this meaning that adding or

removing di�erent types of sensors enlarges or reduces the number of properties available to

the algorithm. The raw data provided by the sensors requires a signal processing procedure

before the implementation of the feature extraction. In the present work, the available

sensors provide position (from odometry), orientation (including GPS), range (from a laser

scanner and sonars) and intensity information (from a vision camera). The main features

considered at the actual stage of the project are the free-area in front of the robot and

its variance (from laser and sonars sensors) for indoors experiences and image histograms

and orientation for outdoors experiences. The features are selected according to the target

scenario, mainly in outdoor environments. If the features are not well selected, in spite of

a good representation, the mapping algorithm provides ambiguities over the representation.

Therefore, it is also necessary to de�ne a criteria to analyze the features quality based on the

measurements, [2]. The current research focus the feature extraction from the laser sensor

and from intensity images, which is a strong source of information. Examples of features

are: color, geometric forms, histograms, orientation, pattern, from image and principal

components from the Laser, as referred in [3] and [8].

2.3 Experimental Results

The mapping algorithm was tested in outdoors environments, using the sensor information

acquired by the ATRV-Jr rover during the path execution. The scenario coped a large area



(approximately 1500m2) represented in Figure 1, involving buildings, trees, cars parked and

moving and people walking. The robot was completely autonomous when following a path

de�ned by a set of via points. Each via point was parameterized by the GPS coordinates. To

accomplish this mission, two behaviours based on [5] were implemented: one to follow the

via points and the other to achieve obstacle avoidance. To face a possible temporarily GPS

failure, a Kalman Filter based approach implemented dead-reckoning. The feature extracted

from the intensity data, recorded by the robot during the path following, was the brightness

histograms. Using this feature, the mapping algorithm produced a topological map de�ned

by a set states. There might be ambiguity in a couple of states, (see the dashed line in Figure

2), since they correspond to di�erent geographical areas, di�erent images, but with similar

brightness histograms. Consequently, the type and number of features has to be correctly

selected to avoid mismatching.

Figure 1: The scenario

Figure 2: Left: The Laser and sonar measurements acquired in the environment. Right:

The Topological map compiled by the algorithm

The future work includes a deep choice and selection of the features and the integration

of the Markov Model approach presented in [4] for localization in a simultaneous localiza-

tion and mapping procedure (SLAM) aiming a topological navigation at search and rescue

operations.



3 Vision-Based Aerial Blimp Navigation

The aerial blimp robot is now able to y. The �rst step consisted of developing a driver to

provide access to the radio controller, whose hardware had been modi�ed in the �rst year

to allow remote control by a ground computer. Then, several measurements were made

to obtain the characteristic functions that relate the voltage sent to the motors with the

thrust generated by the propellers. All resulting curves and �tted functions are available.

Using that, a control library for position and velocity control was developed. The library is

modular and consists of three control levels (see Figure 3), from position control in world

coordinates down to velocity control of forward/backward, upward/downward and rotation

around the vertical axis movements, in vehicle coordinates. This control library can be used

like a black box. The user can control separately the local velocities over the global direction

control up to the global position control [1].

Level 1
local velocity vontrol

rotation

forward/backward

up/down

Level 2
global direction and

velocity control

Level 3
global position

control

velocity
guidance
controller

position
guidance
controller

Figure 3: main control structure

Feedback for the closed-loop controller is provided by a video camera, the single on board

sensor avilable. The optical ow is calculated from image sequences and used as an estimator

of the blimp velocity components. The integration of the optical ow provides rough position

estimation.

Several indoors tests were performed and their results will soon be available in a technical

report. Generally, the results were positive, and it is possible to control the robot velocity

in 3D space, including the compensation of dynamical e�ects like simulated weak wind.

Nevertheless, optical ow has some drawbacks, especially notable after integration, resulting

in an often poor odometric estimate of the blimp position in world coordinates.

Plans for future work include the development of visual tracking algorithms to enable

the aerial blimp following the land robot, and to provide a vision-based topological map of

the scene below the blimp, as speci�ed in the project reference scenario.

4 Software and Functional Architectures

The �rst part of the work carried out in the second year concerning architectural aspects

was concerned with concept de�nitions and speci�cation. We de�ne a Rescue Agent as an

agent with its own execution context, its own state and memory and a way of sensing and

taking actions on the environment. Each of the agents is an active object with two de�ned



ports in the upper interface. One of the ports is the input port and one can see it like the

sense port from where the agent is noti�ed of changes in the world. Another can see it

like the request port from where the agent receives noti�cations of actions to perform from

higher-level agents. The other port is the output port from where the agent reports progress

to the caller or from where the agent throws events to higher-level agents. This is what we

de�ne as the consistent interface for communication and control. The agent can also have

a lower level interface from where he can control and sense the agents beneath him. The

lower level interface is customized in accordance to the type of agent, for instance an agent

�nite state machine has so many lower level control ports as agents that he is controlling

and a lower level input port where all lower level agents write events. The ports are linked

together through the blackboard. For con�guration exibility of the agent's hierarchy, the

agent upper ports are never assigned in the de�nition of the agent. Ports are assigned in the

de�nition of the mission. Ports are really a synchronized data entry on the blackboard.

Each agent also de�nes a new scope (his scope) inside of the blackboard. This scope

can be viewed as the memory of the agent. Di�erent agent types are supported under this

concept [1]. The combinations between di�erent agent types provides the exibility required

by a functional architecture as that of the Rescue project. For special interactions that are

not supported yet, the architecture is open in a way to include other types of agents.

The architecture consists of three basic components (agents, blackboard and control/communications

interface), as well as of �ve Execution Modes for each of those components: the Control Mode

coordinates the run-time interactions between the basic components, while the Design, Cal-

ibration, Supervisory Control, and Logging and Data Modes concern the programmer inter-

face.

The control from an upper agent to a lower agent is done trough special and well-de�ned

functions: start, stop, set and reset. In this sense if we stop the agent that mimics the eet,

it will request his agents (the robots) to stop, so a cascading reaction will stop all the agents'

hierarchy inside each of the robots, from the top until the low-level hardware agents. Similar

behaviour happens with the start command.

After the de�nition of the software and functional architectures, current work is focussed

on its implementation, namely on the implementation of the distributed blackboard and some

basic agents. Right now, we are focusing mostly on the Control Mode of the architecture.

The blackboard ports are already implemented, as special FIFO (�rst in �rst out) chan-

nels, through which the agents can write or read samples.

Samples are a special type of data that have coupled a time tag and a sequence number

given at data creation time. The data inside a Sample can be of several types like integer,

oat and char. We have also dynamical arrays of integer, oat and char. For instance an

array of two oats, can be used for multidimensional data like XY velocity vectors.

The blackboard ports are special FIFOs, since they have several features and support

a special set of operations. The reader agent is able to get the �rst produced sample, the

last one, or the sample with order "n". The maximum size of the FIFO is decided upon

the declaration of the port. The size of the FIFO is preserved by discarding the oldest

sample. The ports have a blocking read operation and a non-blocking one. Writing is always

non-blocking.

In addition to get (read from the port) the samples by the order number, an agent can

get the samples by its time tage: the sample with time tag closest to the time speci�ed is

returned.



The main goal is that the agents can pick from several (input) ports the samples \si-

multaneously" without being blocked by the ports, then they process the samples (the loop

time), and afterwards they write the result to the (output) ports. Agents do everything

asynchronously. At the end of this step they read from the control port (using a non-block

read) to see if they have received some message from upper level (lets say to stop). Otherwise

they keep looping.

The ports have a global identi�er name, and a CORBA interface in the network. This

mean that agents located in di�erent robots are able to share data. Furthermore, they are

able to start and stop other agents (by issuing commands on the control ports) located in

di�erent computers.

The ports provide the glue to couple the agents together. With the added functionalities

to the ports an agent is able to keep working even if is getting behind the agents that are

producing the data. This approach also �ts nicely for data signal processing, since the ports

have a history of value and time pairs, instead of having only the last value.

Also already implemented is the simple base class for a control loop or periodical agent

that is able to run a function periodically given a customizable time period. This agent has

one input control port and an output control port. This agent runs its function periodically

after it is told to start (message start on the control port), and stops when is ordered to stop

(stop message on control port).

Blocking reads and signals are being used on the discrete part of the system, namely in

the state machine class, witch is being currently implemented. The state machine is event-

driven and waits until some event occurs and then changes its state. Therefore, instead of

looping on the input ports until some command arrives or some condition change it is rather

blocked waiting for a transition event from down level or from a message from upper level

to stop.

References

[1] P. Lima, M. Isabel Ribeiro, Luis Custodio, Jose Santos-Victor "The RESCUE Project

- Cooperative Navigation for Rescue Robots", Proc. of ASER'03 - 1st International

Workshop on Advances in Service Robotics, March 13-15, 2003 - Bardolino, Italy.

[2] M. Law, A. K. Jain, M. Figueiredo. "Feature selection in mixture-based clustering",

Neural Information Processing Systems, 2002.

[3] S. Grigorescu, N. Petkov, P. Kruizinga. "Comparison of Texture Features Based on

Gabor Filters", IEEE Transactions on Image Processing, 11(10), 2002.

[4] A. Vale, M. I. Ribeiro. "A Probabilistic Approach for the Localization of Mobile Robots

in Topological Maps", Proc. of the 10th IEEE Mediterranean Conf. on Control and

Automation, Lisboa, Portugal, 2002.

[5] E. Bicho. "Dynamic approach to behavior-based robotics: design, speci�cation, analysis,

simulation and implementation", Shaker Verlag, Aachen, ISBN 3-8265-7462-1, (2000).

[6] S. Thrun. "Probabilistic Algorithm in Robotics" Arti�cial Inteligence Mag., 21(4), pp.

93{109, 2000.



[7] S. Thrun, W. Burgard and D. Fox, "A Real-Time Algorithm for Mobile Robot Mapping

with Applications to Multi-Robot and 3D Mapping", Proc. of the IEEE Int. Conf. on

Robotics and Automation, 2000.

[8] F. Wallner, B. Schiele and J. Crowley. "Position Estimation for a Mobile Robot From

Principal Components of Laser Range Data", Robotics and Autonomous Systems,

(1998).

[9] M. Kijima. "Markov Processes for Stochastic Modeling", Chapman & Hall, (1997).


